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The stability of quasi-geostrophic barotropic fields induced by localized finite-ampli- 
tude potential vorticity sources or topographies which depend only on the zonal 
direction is investigated both analytically and numerically. The analytical study is 
for weak forcing. It demonstrates that the field induced by the topography is stable 
whereas the field induced by the potential vorticity eource can be unstable. The 
growth rate is exponential and is a function of both nonlinearity and friction. In the 
absence of friction the flow field is always unstable. The instability takes the form of 
a current whose meridional wavenumber is that of a stationary Rossby wave. In the 
zonal direction the current exhibits long-scale oscillations and exponential decay. The 
numerical computations which are for strong forcing verify all the indications of the 
asymptotic study. They show a rapid exponential growth of a non-propagating but 
oscillatory wave packet whose location is fixed relative to the forcing. The zonal scale 
of the packet is that of a stationary Rossby wave. For weak forcing the instability can 
be responsible for changing the flow field from one quasi-steady state to another where 
the energy extraction takes place in the region of the source. It is efficient for potential 
vorticity sources whose length scale is comparable to the length scale of stationary 
Rossby waves. In agreement with the asymptotic study, fields induced by strong 
topographic forcing are found to be stable. The asymptotic analysis is also applied to 
baroclinic flows where the investigation is performed in the framework of the two-layer 
model. It is demonstrated that the same mechanism which operates in barotropic 
systems can also destabilize baroclinic flows which possess subcritical shears. 

1. Introduction 
The influence of topography and heat sources on the evolution of quasi-geostrophic 

systems is it central problem of geophysical fluid dynamics. A few years ago there wita 
a flare-up of papers that were concerned with the nature of large-scale flow past 
topographic features with some emphasis on the Taylor-column problem. We do not 
attempt to provide the reader with an exhaustive list of references but some examples 
are Hogg (1973); Huppert (1975); McCartney (1975) and Merkine (1975). 

In most cases the studies were concerned with steady-state solutions. The problem 
of the stability of such solutions to small perturbations has not been dealt with. The 
difficulty is obvious; because of the non-separability of the equation it is not easy to 
study the stability of genera1 fields which are strongly nonhomogeneous in the direction 
of the basic velocity. The exceptional situation occurs when the nonhomogeneity is 
wave-like in nature. Then, Fourier-series representation of the perturbation field or 
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the use of Floquet’s theorem leads to a tractable analytical investigation. Indeed, this 
is the approach adopted by Lorenz (1972); Gill (1974a); Coaker (1977) and others in 
their investigation of the stability of Rossby waves. 

The need for stability studies of more general nonhomogeneous fields in quasi- 
geostrophic systems became more acute when Charney & Devore ( 1  979) suggested 
the existence of multiple flow equilibria in the atmosphere. Using the quasi-geostrophic 
barotropic vorticity equation in a highly truncated spectral form and introducing 
zonally asymmetric fields induced by topography and by a barotropic analogue of 
thermal driving they found the existence of several equilibrium states. In  some 
instances two stable and one unstable equilibrium states were found. The transition 
among the equilibrium states occurred via an instability mechanism owing its exis- 
tence to the asymmetric forcing. The close resemblance of the equilibrium states 
found by Charney & Devore to familiar flow configurations of the atmosphere tends to 
support their conclusions in spite of the severe spectral truncation of their model. 

Motivated by the above studies we seek to determine the conditions leading to 
instabilities that grow in place in quasi-geostrophic fields induced by localized poten- 
tial vorticity sources. The sources can be attributed to large-scale physical processes 
not resolved by the simplified model considered. As a first step towards studying more 
general fields we consider basic states which are nonhomogeneous in the streamwise 
direction only. This simplification allows us to obtain with relative ease exact finite- 
amplitude steady-state solutions of the governing nonlinear equations. 

The stability study is guided by the important work of Mahony (1972) who investi- 
gated the instability mechanism leading to the generation of cross waves in a long 
water channel excited at  one end by a wave maker. Analytical approach to the 
stability problem is possible when nonlinearity, which measures the nonhomogeneity 
of the basic field and which is also proportional to the strength of the potential vor- 
ticity source, is weak. As a result small growth rates are obtained. Nevertheless, the 
good agreement of Mahony’s asymptotic study with the experimental results of 
Barnard & Pritchard (1972) do support the relevance of such an approach. In $ 2  the 
asymptotic investigation is performed and instability is found. It is discussed in $3; 
and $ 4 presents numerical computations of the instability when the nonhomogeneity 
of the basic field is strong. The results show a rapid evolution of a non-propagating 
wave packet. 

The analysis described in $52-4 is restricted to barotropic flows. Section 5 extends 
the asymptotic analysis of 3 2 to two-layer baroclinic flows possessing subcritical 
shears. 

2. Analysis 
Consider a quasi-geostrophic barotropic flow in a horizontally open domain which 

is confined vertically by two horizontal planes, a distance D apart. The beta plane 
approximation is employed; f,, is the Coriolis parameter at the reference latitude and 
p‘ is the gradient of the planetary vorticity a t  that latitude. The flow field consists of 
a uniform westerly flow U* plus a deviation induced by a localized potential vorticity 
source and by a localized topography. The nondimensional quasi-geostrophic vorticity 
equation govening the deviation stream function $ is 

V2$t + V2$z +p$., + F, + rV2$ + eJ($ ,  V2$ -I- F) = G .  (1) 
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U* and L are the scales chosen for nondimensionalization where the actual value of L 
will be specified later; x points eastward and y points northward; p = p'L2/U* is the 
beta parameter, r = Ei/Ro is the friction parameter where Ro = U * / ( f o  L) is the 
Rossby number and E = v/(& D2)  is the Ekman number; E measures the importance of 
nonlinear effects. It is equal to max (a/Ro, (f, ,~Ro)-l), where 01 is the fractional height 
of the topography and T is the time scale of the vorticity source. F and G denote the 
shape functions of the topography and of the potential vorticity source, respectively, 
where max IF( < 1 and max lG1 6 1. The dimensional deviation stream function is 
given by &U*L$. Large-scale geophysical flows are typified by small Rossby numbers 
and consistent quasi-geostrophic approximation requires that p, r and E remain 
bounded in the limit Ro-t 0. We shall consider the case of r < 1 since the spin-down 
time for geophysical flows is much larger than the advection time. 

Assume that P = F ( x )  and G = G ( x )  and let #(x) be the corresponding steady-stabe 
solution. It follows that J ( # ,  Q2$ + F) = 0 and that is governed by the linear equation 

$,xz + P # x  + Fx + r$sr = , (2) 

for finite values of 6 .  q5 is the basic state whose stability properties we wish to deter- 
mine. Using the Fourier transform 

we find that 

It will be demonstrated later that the relevant information concerning the stability 
properties of q5 can be extracted directly from (4) and there is no need to embark on 
the difficult although possible task of transforming 6 back into the physical plane. It 
can be shown: however, that the basic state consists of a local response confined to the 
vicinity of the forcing plus a Rossby lee wave. Unlike the stability studies of Gill 
(1974a) and Coaker (1977)  an instability which grows in place is intrinsic to the local 
field and not to the Rossby wave. 

Let 

$ = #(x) + p l k  Y, t ) ,  (5) 

where g~ is the perturbation from the steady-state solution q5. Upon substituting (5) 
into (1) and neglecting quadratic terms of the perturbation field we obtain the fol- 
lowing linear equation for pl, 

Q2Pt + v2plx +Ppl, + rV2P t €4, Q2PV - 4#xx.c  + Fx) Py = 0. 

pl(x, y, t )  = U ( x ,  t )  sin Zy + V ( x ,  t )  cos Zy, 

(6) 

(7 )  

Without any loss of generality we can write 

where E ,  the meridional wavenumber, is still unspecified. When (7) is substituted into 
(6) we obtain two equations governing the evolution of U and V ,  

Ux,,-Z2q+ Ux,,-Z2U,+~Ux+r(Ux,-Z2U) = ~Z#x(~x-Z2V)-~Z(#xxx+Px)  V ,  (8) 

KZ.- Z2&+ V,,, - Z2c +pG + r (Cx - Z2V) = - eZ#x(U,, - Z2U) + eZ(q5,,,. + Pz) U .  (9) 
11-2 
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The difficulty in solving the last two equations lies in the fact that the terms propor- 
tional to e contain coefficients which are functions of x of which 4 is not even explicitly 
known. This problem can be alleviated if instead of dealing directly with (8) and (9) 
we study the time evolution of hheir Fourier transforms given by 

where 

x {(k2 - 2kk’- 1 2 )  $(k - k’) - @ ( I t -  k’) }P(k’ ,  t ) ,  (10) 

x { ( k 2 - 2 k k ‘ - l 2 ) $ ( k - k ‘ ) - # ( k -  k‘)) o(k’,k), (11) 

Q ( k )  = k ( l  - P / ( k 2 + / 2 ) )  (12) 

is the Rossby wave dispersion relation. 
Analytical study of the stability problem is feasible only for small values of E .  

Then, the nonhomogeneity of the basic field seems to  affect the evolution of the dis- 
turbance at large time only and we can exploit this separation of scales to our advan- 
tage. Thus, we formally expand 8 and P in powers of e in the following way: 

o= UO+€U’+ ..., B = VO+SV’+ ... . (13) 

It will be seen that this expansion collapses for t = O(e-*) and that a modified expan- 
sion is required. Nevertheless, we choose to  start with (13) sinceits breakdown provides 
us with the physical understanding required for devising a more uniform asymptotic 
expansion. It should be emphasized again that the basic field is an exact solution of 
the governing equation independently of E and it  requires no approximation. The 
difficulty is associated with the stability study. 

The solution for the leading order of the perturbation field is 

UO(k, t )  = y ( k )  e-iQ(k)te-rt, VO(k, t )  = S(k) e-in(k)te-rt, (14) 

which describes the spectrum of free Rossby waves whose decay rate r is independent 
of the wavenumber vector. y and Jdetermine the initial spectrum distribution. Thus, 
to this order in E the nonhomogeneity of the basic field is not felt, implying that only 
higher-order terms in E could reveal a growing perturbation. I n  the modified ex- 
pansion the nonhomogeneity of the basic field is incorporated directly into the leading 
order of the expansion. This enables the free Rossby waves and the growing perturba- 
tion to  bootstrap one another to yield an exponentially growing wave packet. 

The next order of the expansion is governed by 

U;+iR(k) U’+rU’ = --- 

x [(k-k’) Y ( k , k ’ )  +Z(k ,k’ ) ]S(k’ )e- iR(”’ ) ,  (15) 

F‘+iQ(k)  V ’ + r V ’  = ~- 
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where the right-hand side of (15) and (16) is obtained by substituting (14) into the 
right-hand side of (10) and (1  1 ) : 

i ( k 2 - 2 k k ' - l 2 ) d ( k -  k') 
Z ( k , k ' )  = (k - k')2- p- i (k  - k') r 

Y is the contribution due to  the topography and Z is the contribution arising from 
the potential vorticity source. The solution for U' and V' is simply 

x [(k - k') Y(k,  k') + Z ( k ,  k')] 6(k') e-i*(k')s, 

x [(k - I c ' )  Y ( k ,  k') + Z ( k ,  k')] y(k ' )  e-i*(P)s. 19) 

It is clear that the formal expansion in e gives a useful description of the solution 
provided the O ( E )  correction remains bounded in time. This may not be the case, as the 
following considerations demonstrate. For any finite value of t the expressions given 
by (18) and (19) are bounded, yielding an O ( E )  correction to  the leading order given by 
(14). Thus, it suffices to  consider the behaviour of (18) and (19) for large time which 
amounts to considering the integrand of the outer integral for large values of s. This 
integrand contains the inner integral as a part of it. For large s the inner integral can 
be estimated using the method of stationary phase. 

Stationary phase is obtained by requiring that 

where SZ is given by (12). This requirement is equivalent to seeking waves with zero 
group velocity. Real solutions of (20) are possible provided 12 < p. They are given by 

lc; = _+ 2-4[ - (2Z2+p) +,@(p+ 8Z2)*]4. (21) 

The second derivative of SZ with respect to k' is given by 

I n  general (22) is different from zero for k' = k; given by (21) unless 12 = /3. In  t.his 
latter case both (20) and (22) vanish with kh = 0 ,  SZ(0) = 0 and 

a 3  6 z3 Q(kh = 0,Z2 = p)  = - 
P' 

The dominant contribution to  the inner integral comes from the phase which is most 
stationary. This requires l2 = p thus determining the most dangerous rneridional wave- 
number. Dimensionally it is given by 1" = (p ' /U*)4  which is also the wavenumber of a 
stationary Rossby wave. These considerations imply that ( r '* /P ' )& is the natural 
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length scale of the problem and we identify it with L. With this renormalization we 
obtain that @ = 1 and 1 is set equal to 1.  

The method of stationary phase yields the following estimates for the inner integrals 
appearing in ( 1  8) and ( 19) 

with 

lm dk'[ ( k -  k')  Yfk ,  k') + Z ( k ,  k ' ) ]  
-m 

I = jm dk'exp ( - ik'3s) = 3- t r ($ ) s - f  
-m 

S-fCO, (23) 

from Gradshteyn & Ryzhik (1965). 
It follows that the O(e)  correction is given by 

x [ k Y ( k , O ) + Z ( k , O ) ]  dseiR(k)ss-*, t+w. ( 2 5 )  

The only way that the perturbation expansion breaks down is when the last integral 
becomes large. This is possible only if Q ( k )  = 0, i.e. for long waves (k - 0) or equiva- 
lently for that part of the spectrum which represents currents. We obtain that for the 
long-wave part of the spectrum the O(e)  correction to the perturbation field is given by 

Jb 

For any other value of k the inkgrand is oscillatory and the Riemann-Lebesgue lemma 
guarantees that the integral is not large. The above solution for the perturbation 
field can be interpreted as representing a group-velocity resonance where two pertur- 
bation fields with zero group velocity interact with the long-wave part of the spectrum 
of the forced (basic) flow. This triad of wave vectors is shown in figure 1. 

We would like to point out that the estimate given by (26) could have been achieved 
differently. Starting again with (18) and (1  9), we can perform the s integration first' 
and then use the method of stationary phase to estimate the integral over k' for large t .  
The end result is the same. We also note that the contribution of the stationary points 
(21) for which l 2  < j3 and hence ( 2 2 )  does not vanish leads to a correction which is 
O(eth) and consequently insignificant compared to  (26). 

It is important to  mention that the estimate of the integral as presented above is 
not complete since i t  omits a possible resonant instability of the wavy part of the 
wake of the basic flow.? The Rossby lee wave is associated with the roots of the 
denominator of (4). When r 1 these roots are located close to  the real axis in the 
complex k plane. This suggests that  for times much less than the spin-down time 
( t  < r - l )  the perturbation field can interact efficiently with the Rossby lee wave. The 
two perturbation components centred within a distance of O(r)  around the 
wave vectors El = (8,34/2), K2 = (Q, - 33/2) and frequencies Q(Rl) = 0, Q(E2) = 0 

t Thr autlior is irrtlebtecl to Dr Peter Rhines for this comment. 
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- 
K $ - P  0 

FIGURE 1. Triad of waves participating in the zero groupvelocity resonance. K, and K, are the 
wave vectors of the perturbation field and K6 whicl~ tends to zero is the wave vector of the basic 
AOW. 

form with the Rossby lee wave, whose wave vector and frequency are x+ = (1,0), 
sZ(g+,) = 0, a resonant triad for which the O(e) spectrum of the perturbation field is 
proportional to  t / r .  (ii? = (k, 1 )  and ,8 = 1.) Under a more uniform perturbation 
sequence this linear growth can become exponential, suggesting instability of the 
Rossby lee wave. Since i3S2(Rl)/8k = 4, 8Q(x2)/i3k = 4 this possible instability is con- 
vective, contrary to  the non-convective nature (zero group-velocity) of the instability 
investigated in this work. This suggests disengagement of the two instabilities for 
sufficiently large times. We point out that the choice 1 = 1 filters out the possible 
instability of the Rossby lee wave. 

An important point of observation which we shall return to later is that the growth 
of the O(e) field is a consequence of the potential vorticity source G provided 6(0) + 0 
and is not a consequence of the topography, although a weaker growth in the case of 
topography is not ruled out. This is why we have chosen to  study explicitly the stability 
properties of a stationary field excited both by a potential vorticity source and by a 
topography. 

The above considerations imply that when et3 = O( 1)  and r = O(&) the perturbation 
expansion collapses, (26) is not reliable and we need to devise another expansion 
which is uniformly bounded in time for t = O(e-3). R e  consider again equations (10) 
and ( 1  1) which can be writt,en as 

h - 4  

U,+iQ(k)  ZJ+rU = --- 

A 

C7t + i R ( k )  17+ r I' = - - 

where a = 1 and 1 = 1 corresponding to the most dangerous meridional wavenumber 
from our earlier discussions. The st'ationary field is generated now only by the poten- 
tial vorticity source G(x) .  

From the considerations leading to the asymptotic form of the O ( E )  field it follows 
that the Riemann-Lebesgue lemma cannot be invoked for a bandwidth Ak of O(t-4) 
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in the vicinity of k = 0. The failure of the perturbation expansion for ct3 = O(1) 
implies that  the width of the band Ak for which the response is not oscillatory is 
O(&). We conclude that the right-hand side of equations (27)-(28) can at  the most 
yield an O ( d )  effective reinforcement mechanism which is possible only for a wave 
band Ak of 0(d) in the vicinity of k = 0. 

The arguments presented above suggest solutions of the form 

where 
8 = 8(t,7, K ) ,  P = P(t,7,  K ) ,  

7 = d t ,  K = A/&. 
One of the consequences of the O(e4) wave band involved is a slow O(c-4) x-modulation 
of the perturbation field. 

The equations for 8 and P to O ( d )  are obtained by substituting (29) and (30) into 
(27) and (28).  It follows that 

where it is required that r = O(e%). These last two equations suggest the following 
formal expansion 

A 

0 = u O + € q +  ...) C’= V , + s q + . . .  . (33) 

The solution for the leading order is simply 

The next order yields 
(34) 

(35) 

The asymptotic expansion remains uniformly bounded in time for t = O(e-3) provided 
the right-hand side of the last two equations is set equal to  zero. This leads to the 
following two equations governing the long time evolution of A and B, 

(37) 

(38) 

rendering equations (35) and (36) homogeneous. The leading order is now affected by 
the nonhomogeneity of the basic field (compare with (14)) and our objective is to  
solve (37) and (38). Note t,hat (37) and (38) could not have been obtained by a simple 
low-wavenumber approximation since in the limit e+  0 the integrals that  appear in 
these two equations should be interpreted as 6 functions in the physical space (see $4). 
This implies (i) that although the dominant, contribution comes from the low-wave- 
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number components all the spectrum is in fact participating in the dynamics, (ii) that 
the interaction of the perturbation with the basic field takes place in a localized region 
of the physical space. We now define 

M ( 7 )  = Jm dK’A(7, K’)) N ( 7 )  = Jm dK’B(7, K’), (39) 
- m  -02  

so that (37) and (38) can be written as 

with 
A ,  + @A = C N ( 7 ) ,  B, + OB = - CM(7)  (401, (41) 

, c = 6(0)/(27r)*. (421 

Equations (40) and (41) can be integrated with respect to 7 to yield 

A ( 7 , K )  = Ce-Or dse@sN(s)+A(O,K), (43) 

B(7, K )  = - Ce-*r ds eesM(s) + B(O, K ) .  (44) 1: 
Integration of (43) and (44) with respect to K leads to two integral equations of the 
Volterra type which govern the evolution of M(7) and N ( 7 ) .  We obtain 

m 

M(7)  = (’1: ds N ( s )  exp [ - (7 - s) T / E * ]  s dK’ exp [ - Z 3 ( 7  - s)] + M(O), (45) 
- m  

m 

dsM(s)exp[-(r-e)r/€*]s d K ’ e ~ p [ - i K ‘ ~ ( 7 - ~ ) 1 + N ( O ) ,  (46) 
--oo 

with 

(see (24)). Equations (45) and (46) can be handled most effectively with the aid of the 
Laplace transform 

and we obtain the following two algebraic equations 

with 

from Erd6lyi et al. (1954). M ( 0 )  and N ( 0 )  measure the initial int,egrated spectrum of 
the disturbance. Solving (49) and (50) for B ( p )  and m ( p )  and using the inverse Laplace 
transform, we find that 
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with 
H = r(f) r(8)/3*(2r)* = ( 2 n ) t p  E 0.8355, (53) 

and the contour of integration in (52) is such that c is to the right of all the singular 
points of the integrand. 

The poles and branch points of the integrand of (52) determine the time evolution 
of M and N which for large time is dominated by those poles having the largest real 
part. The poles of the integrand are located at 

P = 0, 

2) 
p = - r / € ~ f Z ( 1 + i ) ( 8 ( O ) H ) % ,  (54) 

2, = -r /€%+-(- l&i)(@(o)H)% 2h 
2 

(If 6(0) < 0 replace 6(0) by Id(0)l in (54) and in the subsequent equations.) It is 
clear that exponential growth in time or instability is obtained if 

or 
8 > 2b8/(6(0)H) 2: 1*50798/6(0). 

Furthermore, the flow is always unstable if r -+ 0. v is the long time growth rate. In  
terms of the short time t the growth rate is given by E ~ V .  

In  the case of instability the evolution of M and N is dominated by those poles with 
Rep > 0.  We then find that 

with 

a = arctan ( [ / ( ( . / s t )  - 5)) + tan-l (N(O)/M(O)) + an, (59) 

24 6 = - [d(O) HI#. 
2 

To obtain the spatial structure of the disturbance we substitute (57) into (43) and 
(44) and obtain 

&7Rey7 exp ( - i(57 + a)) 

Note that the denominator of (60) is the only expression containing the spatial 
structure which is obtained by calculating the inverse Fourier transform of (60). We 
then have to evaluate the integrals 

where X = dx. This is accomplished most easily using contour integration and we 
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shall not pursue this matter any further. Equations (60) and (61) show that the 
x-structure of the instability consists of exponentially decaying oscillations with a 
wavenumber and a spatial decay rate both of O([d (O)  €14). We note that friction does 
not affect the spatial structure of the instability in spite of the fact that it does affect 
its growth rate in time. 

The analysis presented above shows that the condition for instability is derived 
from the solution for M and N .  In  the physical space M and N are proportional to 
U(0, t )  and V(0, t )  (see (7)). It follows that (52) determines the evolution of the dis- 
turbance at  the origin. An interesting point is that although the initial spectral 
distribution? i.e. A(0,  K )  and B(0, K ) ,  is sufficient to determine? using (37) and (38), 
the evolution of the disturbance, no instability is possible if U ( 0 , 7 )  and V(0 ,7 )  or 
equivalently if M ( 7 )  and N ( 7 )  are zero initially as evident from (57) and (58). 

Equations (37) and (38) describe the evolution of the instability in terms of the 
stretched variables K and 7.  When expressed in terms of the original variables the 
right-hand side of these equations contains e as a multiplicative factor. The result (26) 
can be recovered from such equations provided the asymptotic series (13) is used 
again. However, the algebraic growth suggested by (26) cannot be recovered from the 
solution of (37) and (38) when expressed in terms of the original variables. This is a 
reflection of the singular nature of the problem where e = 0 and s+O lead to two 
different dynamic evolutions of the system even initially. 

3. Discussion of the asymptotic results 
In  the preceding section we have investigated the stability properties of a steady 

finite-amplitude field induced by a localized topography and a localized source of 
potential vorticity which depend only on the zonal direction but are otherwise general. 
Under this constraint the basic state is governed by a linear equation which can be 
easily solved in the wavenumber space. In  fact, the projection on zero zonal wave- 
number of the advection of the perturbation vorticity by the meridional velocity of 
the basic state is the only information that is pertinent to the stability problem. This 
projection is proportional to 6(0) and hence it is also proportional to the integrated 
strength of the forcing in the physical space. The topography is x-differentiated in the 
vorticity equation and as such it acts like a dipole whose integrated strength is zero. 
This is the reason for the stability? to the order considered, of the field induced by 
topographic forcing. Heat sources, on the other hand, are frequently modelled in 
barotropic flows by vorticity sources whose integrated strength is not zero (6(0) + 0).  
Such modelling can represent the barotropic contribution to the circulation of local 
surface temperature anomalies which are occasionally observed in weather 
maps. 

If the one-dimensional potential vorticity source has non-zero integrated strength? 
i.e. 6(0) =t= 0, the projection on zero zonal wavenumber of the meridional advection of 
the perturbation vorticity by the basic state is also different from zero. Our results 
demonstrate that such a basic state can become unstable depending on the relation 
between nonlinearity and friction and in the limit of zero friction it is always unstable. 

The instability that develops is essentially a Rossby wave packet which must have 
zero group velocity relative to the stationary forcing for otherwise its energy will be 
radiated to infinity without any chance for local amplitude build-up. In fact, this is 
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the reason for the spatial decay of the instability which is also friction independent. 
The growth rate of the instability does depend, of course, on friction. 

The spatial structure of the instability is slowly modulat,ing both in space and in 
time. The time scale of modulation is O(E-8). The length scale of modulation is O(E-4).  
This implies that the first effect of increasing the nonlinearity is to render an instability 
field which is more localized in space. 

The meridional wavenumber of the instability is that of a stationary Rossby wave. 
This is a consequence of the dynamics which selects the mode of instability with the 
least chance of leaking its energy to infinity.t It follows that the instability possesses 
a current-like structure which explains why the projection of the basic state on zero 
zonal wavenumber is the only information that is pertinent to the stability problem. 

Our analysis indicates that the instability is a zero group-velocity phenomenon 
associated with a band of wavenumbers in the vicinity of k = 0. It is important to 
determine whether it is related to the Rossby wave instability of Lorenz (1972) and 
Gill ( 1 9 7 4 ~ ) .  Consider first the Rossby lee wave. If i t  were a free-wave solution extend- 
ing over all space i t  could not become unstable to the pert’urbation considered here. 
The reason follows from Fjortoft’s (1953) theorem which requires as a necessary 
condition for instability a perturbation possessing a t  least one wavelength exceeding 
that of the Rossby wave. In  our case 1 = 1,  implying that k2 + l2 > 1, and Rossby wave 
instability is ruled out since the wavenumber of the Rossby lee wave is one. 

It remains to be seen whether this conclusion is altered by the fact that we are 
actually dealing with a lee wave, i.e. a forced-wave rather than with a free-wave 
solution. Since the projection on zero zonal wavenumber of the meridional velocity of 
the basic state is the only information associated with the basic state that is pertinent 
directly to the stability problem, it is mandatory that we should determine the 
contribution of the Rossby lee wave to this projection. We shall do this through an 
illustration. 

Consider the ‘ top-hat ’ potential vorticity source. 

with 
d(0) = L0/(2n)3. 

I n  the absence of friction the basic state is governed by 

4zxx + 4z = G (64) 
with 

& = Q(k) / ( l  -I?), &O) = O(0)  = L0/(2n)4. ( 6 5 )  

The solution for the meridional velocity is given by 

0, x < 0, 
q5z = 1-cosx, 0 < x < Lo, i cos (x - Lo) - cos x, x > Lo. 

t This statement is open to criticism if the resonant instability of t lw Rossby lee wave does 
exist. 
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Here, 1 - cos x is the local field and cos (x - Lo) - cos x is the solution for the Rossby 
lee wave. It follows that the projection of the local field on k = 0 is given by 

implying that the corresponding project'ion of the Rossby lee wave is 

We conclude that the Rossby lee wave contributes to $,(O) and hence it is responsible 
in part for the instability; nevertheless it is not essent'ial for the instability. In  fact, 
if Lo = nn and n is an integer $$(O)  = 0 and the local field is the sole contributor to the 
instability. Furthermore, if n is even the Rossby lee wave vanishes altogether and 
the local field is the only non-trivial solution. This example demonstrates that the 
source of the instability is the local field and that it is not a t  all related to the familiar 
Rossby wave instability. This point has been verified by numerical integration of the 
initial-value problem for finite 8.  

Figure 2 depicts the meridional velocity of the basic state (66) for Lo = 1 .  The 
stream function of the total basic field (zonal flow plus the field induced by the 
potential vorticity source) is given by - y + q5. Streamlines of this field for e = 6 and 
the potential vorticity source (62) are shown in figure 3. This is a case of strong stream- 
wise nonhomogeneity for which numerical results are presented in the next section. 

The above example besides emphasizing the important role of d(0) shows also 
that d(0) = O(L,/( U* /p ' ) i ) ,  where L, is a typical length scale of the source (for the 
' top-hat ' profile Lo = L,/( U*/p')*).  This implies that the instability mechanism can 
be efficient only for potential vorticity sources whose typical length scale is equal to 
or larger than the scale of the stationary Rossby wave. Mid-latitude atmospheric 
conditions yield (U*/p')* N 750 km. 

The important role of the meridional velocity of the basic state emerges also from 
energy considerations. Consider, for simplicity, the case of F = 0,  1 = 1, p = 1 and 
r = 0. Multiply (8) by U ,  (9) by V And use (2) to eliminate $,,,. Combine the two equa- 
tions and integrate the resulting equation over x to yield the following energy integral 
of the perturbation field 

W W y & ( U i +  U2+ v:+ V2)dx = €1 $,(VUzz- UV,,)dx 

= .j ( U V ,  - VU,) &, dx. 

dt - W  

03 

(69) 
-m 

We observe that instability is possible provided the Reynolds stress induced by the 
meridional velocity of the basic state and the zonal velocity of the perturbation field 
is positively correlated with the vorticity of the perturbation field, or equivalently 
that the meridionally averaged Reynolds stress field of the perturbation is positively 
correlated with the vorticity of the basic field. 

We have investigated the leading order of the linear phase of the evolution of the 
instability for small 8 and have found out that  the growth rate is exponential. It is 
clear that the analysis must be modified fort > O(c-8).  Equations (35) and (36) suggest 
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FIGURE 3. Streamlines of the unperturbed field which consists of a uniform zonal flow plus EL 

deviation induced by the potential vorticity source (62) for 8 = 6. The ' top-hat ' potential vor- 
ticity source stretches from R: = 0 to z = 1. The origin of the y-co-ordinate is arbitrary. The 
arrows indicate the direction of the flow and we observe a pure zonal flow ahead of the forcing and 
ameandering How downstream of it. 0, - 1.7138; a, 0.1724; +, 2.0586; x , 3.9448; 0 , 5 . 8 3 1 0 ;  
4, 7.7171; X ,  9.6033; z, 11.4895; Y, 13.3757; n, 15.2619. 

that there is no O(&) correction, since if we exclude the possibility of modifying the 
y-structure, U ,  and V, must be functions of r and K only and consequently can be 
absorbed in the leading order. It follows that the next correction to the linear problem 
is O(&). This indicates that nonlinear effects should probably be considered before the 
instability cascades down the spectrum. The extension of the asymptotic study into 
t'he nonlinear region is a formidable task and it is difficult, at this stage, to predict the 
final state of the system. We can only be guided by the results of the linear analysis 
and speculate that the system will evolve into an effectively new steady state which, 
however, may modulate slowly in time. If this is the case then the system will move 
through an instability mechanism from one steady state to another once the conditions 
for instability are met. This is in line with the work of Charney & Devore (1979) 
although the evolution here is entirely local. If the qualitative appearance of the 
instability does not change much in the nonlinear regime then its meridional structure 
when superimposed on the basic field should produce in the Rossby lee wave region, 
i.e. downstream of the potential vorticity source, large meridional excursions from 
zonal flow. This situation is referred to as blocking in meteorology. This conclusion is 
in agreement with Merkine ( 1  980). Note that the nonlinear analysis should include the 
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quadratic terms of the perturbation field that were neglected in (6) and the back 
effect of the perturbation field on the zonal flow which provides the mechanism for 
changing the basic field q5. 

4. Numerical solution for finite B 

The asymptotic analysis of the previous sections is supplemented in this section by 
some numerical examples. We consider the case of 1 = 1, /3 = 1, r = 0 and F = 0. 
Equations (8) and (9) can be written as 

where 
6 = uxx- u, 7 = v,- v 

are the vorticity components of the disturbance. The vorticity source is given by (62) 
and q5, by (66). Equations (70) and (71) are supplemented by the initial condition 

t = 0, U = exp(-a(x-b)2), V = 0, (72) 

where a and b are constants determining the steepness and the location of the initial 
pulse. Physically, the initial disturbance can be viewed as an eddy advected down- 
stream by the westerly flow or generated locally by baroclinic activity, for instance. 

In  the absence of forcing, i.e. when 8 = 0, the initial disturbance consists of a group 
of Rossby waves dispersing with time. No wave energy can propagate upstream since 
the group velocity given by 

is always positive. For an initial concentrated disturbance released at x = 0 the region 
occupied by waves is 

where the long waves are found near the tail of the wave packet and their amplitude 
decays at  a rate t-#. The front of the wave train consists of waves with wavenumbers 
k N 34 whose decay rate is again t-4. Outside these two caustic regions the decay rate 
of the wave packet is t-4. 

The physical boundary conditions require vanishing of the disturbance at large 
distances from its region of excitation. Thus, as long as the domain of integration is 
sufficiently large, such boundary conditions can indeed be satisfied. The actual domain 
of integration extended from x = - 10 to x = 17,  implying that the region (74)  starts 
interacting with the boundary at t 2: 15. The boundary conditions used were 

d Q / d k  = k2(3 + k 2 ) / (  1 + k2)2 (73 )  

0 < x / t  < g, ( 7 4 )  

x=-10 ,  u = v = < = r = o ,  
x = 17, U = V = cxx = T x x  = 0. (75 )  

The conditions imposed on the vorticity at x = 17 amount to extrapolating the 
vorticity outward. It allows the wave packet to leave the domain of integration at  the 
price of a local distortion of the solution in the immediate vicinity of x = 17.  This 
permits us to extend the time integration beyond t = 15.  Centred space derivatives 
were used with Ax = 0-2. The integration in time was advanced using Lorenz’s 
N-cycle scheme with N = 4 and t.he small time increment was set equal to 0.025 
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satisfying CFL stability condition. (The phase speed of the waves is less than 1.) 
The new values of U and V were obtained after each time increment from the updated 
vorticity (71) by inverting a tri-diagonal matrix using the double-sweep method. The 
numerical scheme was checked for the case of E = 0 for which the evolution of the 
wave packet is known. It worked satisfactorily; in particular, the decay rate of the 
amplitude of the long waves was t o 3 1 .  

Difficulties may occur when E is finite since the numerical scheme may not properly 
resolve the region of energy extraction with the consequence of underestimating the 
actual strength of the phenomenon. To illustrate the point we now derive in a direct 
way the asymptotic limit of equations (70) for E + O  without transforming the equa- 
tions into the spectral domain. We introduce the scaling 

x = d x ,  7 = E*t 

into (70) and obt,ain that 

Observing that 

for small B ,  we find that in the limit of E-+ 0 equations (77) become 

OD 

U,-Uxxx =,uuS(X) V ,  ,u = [ dxG(x) = (27r)*G(O), . --m 

v, -v,x, = - p w q  u, 
where'6(X) is the Dirac delta function. 

The numerical difficulties are obvious. The energy extraction from the mean flow 
takes place in a very narrow zone compared to the length scale of the instability. For 
small E the width of this zone is O(&) relative to the scale of X ,  and it  is not obvious 
how it increases with B .  This may be the reason for the relatively little success of 
general circulation models in simulating or predicting blocking configurations. 
Although such models can adequately resolve the blocking length scale they are 
incapable of resolving the crucial energy extraction zone. 

The same difficulty seemed to occur in the numerical integration of equations (70) 
with the prescribed spatial resolution. The results presented are for E = 6 and the 
integration was carried out to t = 15. For smaller values of E the integration had to be 
extended well beyond this value oft in order to observe the evolution of the instability. 
The numerical results verified all the qualitative predictions of the asymptotic 
analysis. However, the limitations of the numerical scheme for small E (long integra- 
tions and the finiteness of the domain) precludes the possibility of direct comparison 
of the results with the asymptotic study. 

Figures 4-1 1 depict the results of the numerical integration for Lo = 1 (see (62) and 
(Cis)), a = 1 and b = (see (72)). We observe the rapid evolubion ofa nonpropagating 
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FIGURE 4. The time evolution of the instability a t  x = 1. The undisturbed field is shown in 
figure 3. The initial disturbance is centred in the potential vorticity source region. It has a 
Gaussian shape with a length scale comparable to that of the forcing. 

wave packet whose growth in time is exponential with a growth rate of 0.174. This 
corresponds to an e-folding time of 5 days for U* = 10 m/sec and L = (U*/P')* 
= 750 km. Although the wave packet is not propagating in the x-direction it is oscilla- 
tory. This oscillation in combination with the periodicity in y allows phase-velocity 
propagation in the y-direction. Figure 4 shows the time evolution of the instability 
a t  x = 1 which is the approximate location where the U and V fields attain their 
maximal values. The period of oscillation is 1.650 or 1.43 days for the same values of 
U* and L. The frequency of oscillation is 3.81. Other numerical integrations indicate 
that both the growth rate and the frequency increase with e in agreement with the 
overall predictions of the asymptotic results. However, we cannot infer from these 
numerical results that a transition to a new quasi-steady flow is in fact taking place 
since the instability is highly oscillatory. 

An estimate of the scale of the packet is somewhat arbitrary but it is fair to  say 
that it is close to that of a stationary Rossby wave. This implies that  the spectrum of 
the packet is dominated by wavenumbers lower than (/3'/ U*)*. Therefore, another 
qualitative prediction of the asymptotic analysis is verified: an increase in B results in 
narrower packets. An important consequence of the shrinking of the zonal scale of 
the packet for large e is that the meridional velocity of the perturbation becomes 
comparable to  the zonal velocity of the perturbation. Large meridional velocity 
implies large meridional displacements of streamlines with the flow field assuming, in 
the x-direction, the form of a non-propagating meandering flow. It should be remem- 
bered that the perturbat,ion field is linear and is determined up to  a multiplicative 
constant. Hence the full impact of the instability on the flow field cannot be assessed 
until nonlinear effects are brought into consider a t' ion. 
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FIGURE 5. The U field of the unstable wave packet a t  times t = 5.2, 10.1 and 15.1. The un- 
disturbed field is shown in figure 3. t = 0 denotes the initial disturbance. The dashed line 
denotes the fate of the disturbance a t  t = 10 corresponding to the case of no forcing, i.e. 6 = 0. 
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FIGURE 6. The V field of the unstable wave packet at  times t = 5.2, 10.1 and 15.1 
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FIGURE 7 .  The U and V fields of the unstable wave packet a t  t = 14.7 corresponding to the 
conditions of figure 5. t = 14.7 is approxirnatcly n qunrter of R q c l e  earlier than 1 = 15.1. 
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X 

FIQCJRE 8. Streamlines of the instability field U ( z ,  t )  sin y +  V ( z ,  t )  cos y at  t = 14.3. The arrows 
indicate the direction of the circulation. Counter-clockwise circulations are centred around 
regions of low perturbation pressure denoted by L. Clockwise circulations are centred around 
regions of high perturbation pressure denoted by H .  The origin of the y-co-ordinate is arbitrary. 
The corresponding unperturbed field is shown in figure 3. In figures 8-1 1 the amplitude of the 
initial perturbation is ten times smaller than that of figures P 7 .  0, -0.8547; A, -0.6647; 
+, - 0.4746; x , -0.2846; 0, -0.0946; 4, 0.0955; X , 0.2855; Z, 0.4755; Y, 0.6656; a, 0.8556. 

X 

FIGURE 9. Same as in figure 8 but approximately half a period of oscillations later, t = 15.1. 
0, -0'9634; A, -0.7489; +, -0.5344; X ,  -0.3200; 0 ,  -0.1055; Q,  0.1090; X, 0.3234; 
z, 0.5379; Y, 0.7524; D, 0.9668. 

Figures 5 and 6 depict the zonal structure of the disturbance a t  t = 5.2, 10.1 and 
15.1. At these times, which are three cycles apart (see figure 4), the oscillatory part 
of the U field attains its maximum. Figure 4 shows that t.he U and V fields are a 
quarter of a cycle out of phase, which is also apparent from figures 6 and 7. The U field 
at t = 15-1 (see figure 5) has the same shape as the V field a t  t = 14.7 (see figure 7) ,  
which is approximately a quarter of a cycle earlier. This 90" phase difference yields a 
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X 

FIGURE 10. Streamlines of the basic field (figure 3) plus th'e instability (figure 8) a t  t = 14.3. 
Flow direction is denoted by arrows. L and H correspond to low- and high-pressure regions, 
respectively. 0, -5.0638; A, -2.6615; +, -0.2592; x ,  2.1430; 0 ,  4.5453; Q, 6.9476; 
X, 9.3499; z, 11.7522; Y, 14.1545; #, 16.5568. 

FIGURE 

X 

Same as in figure 10 b u t  approximately half a period of oscillations later, t = 15. 
0, -3.5152; @,, - 1.3394; +, 0.8304;-X, 3.0122; V,5.1880;  Q, 7.3638; X ,  9,5396; z, 11.7154; 
Y, 13.8911; n, 16.0669. 

Reynolds stress field which is highly correlated with the vorticity of the basic field 
(see (69)), implying maximal energy extraction from the basic field. 

Figures 8-1 1 depict the two-dimensional structure of the flow field where the initial 
field given by (72) is multiplied by 0.1. Figures 8 and 9 show the two-dimensional 
structure of the instability (streamlines) a t  times t = 14.3 and t = 15.1 which are 
approximately half a cycle apart. The stream function of the instability is given by (7 ) .  
The structure which is periodic in y is localized and nonpropagating in x. The instability 
assumes the form of alternating closed circulations which are slanted from north-west 
to  south-east. Tn the framework of t h e  quasi-geostrophic approximation streamlines 
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are parallel to isobars and high/low pressure centres are associated with clockwise/ 
counter-clockwise circulations. The zonal scale of the wave packet is similar to its 
meridional scale. The elongated structure of the instability implies that strong 
alternating jets are aligned with the direction of the cells. It follows that in the region 
of the instability the zonal and meridional components of the perturbation velocity 
are negatively correlated. Again we observe a meridionally averaged Reynolds stress 
field which is positively correlated with the vorticity of the basic flow, which in turn 
effects energy extraction from the mean flow into the perturbation. 

The stream function of the total field, i.e. the basic field plus the perturbation, is 
given by - y + e ( # + q ~ ) .  If Iq11 4 the instability can be approximated by (7) .  
Otherwise, a superposition of the basic field plus the linear perturbation can only give 
a crude approximation of the actual flow behaviour, since wave-wave interactions 
should then be taken into consideration. Such a superposition is included here for the 
sake of completeness. The superposition of the streamfunctions corresponding to  
figures 8 and 3 and figures 9 and 3 yields the streamlines depicted in figures 10 and 11. 
We observe that the zonal flow is decelerated in the region where the jets of the 
instability are south-easterly and that i t  is accelerated in the region where the jets 
of the instability are north-westerly. I n  the region of zonal flow deceleration blocking 
configuration with closed circulation develops. Overall, the effect of the instability 
is confined to  the region of the potential vorticity source and to some distance down- 
stream of it. 

Atmospheric blocking tends to  occur at fixed geographical locations relative to the 
distribution of oceans and continents (Charney & Devore 1979). We have repeated 
the numerical integration with different initial conditions by varying a and b, i.e. 
changing the steepness and location of the initial disturbance, placing it upstream or 
downstream of the vorticity source. The instability always developed at the same 
location relative to  the forcing and the same growth rate was obtained. We also 
integrated the equations for the case of Lo = 271 such that no lee wave is excited by 
the potential vorticit'y source (62) as evident from (66). An unstable nonpropagating 
wave packet developed, in agreement with the discussion of the previous section, but the 
growth rate obtained was considerably less than that of the example presented above. 

The asymptotic analysis of the previous sections showed that, a t  least for weak 
forcing, the field induced by topography is stable. It is important to determine 
whether instability exists for strong topographic forcing. We have made numerical 
integrations for the case of topography whose shape is given by the ' top-hat ' profile 
(62). The basic meridional velocity q5z is different from that given by (66) but is 
obtained with the same ease. The other modification requires the elimination of the G 
terms from (70). Various initial conditions were considered with values of e as large 
as 10. I n  agreement with the results of the asymptotic study no inst,ability was 
observed. 

Gill, in an unpublished manuscript (1974b), reported the results of a numerical 
experiment with a periodic two-layer model in which motion was driven by a wind 
stress having the largest scale and the bottom topography included a meridional ridge 
and scattered topographic features. Baroclinic instability occurred a t  wavenumber 6 
in agreement with the linear theory. At later times there was a significant energy 
build-up a t  lower wavenumbers and the region of activity was that of standing lee 
waves in an eastward current. It was suggested that, nonlinear transfer of energy 
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from wavenumber 6 to lower wavenumbers took place. It is also possible that resonant 
instability of the lee waves was triggered when the nonhomogeneity of the stationary 
pattern reached a sufficient degree of intensity as more energy was fed into the largest 
scale by the applied wind stress. 

5. Baroclinic flows 
In this section we generalize the asymptotic study of $ 2  to baroclinic flows. We 

consider the two-layer beta plane model for a quasi-geostrophic baroclinic flow in a 
horizontally open domain which is confined vertically by two horizontal planes a 
distance D apart. In the absence of motion the two layers are of equal depth. The flow 
consists of a vertically sheared horizontally uniform westerly flow U, (n = 1 for 
the upper layer and n = 2 for the lower layer) plus a deviation arising from the 
presence of a localized potential vorticity source S,. The non-dimensional equations 
governing the deviation stream function are 

= - " J ( $ 1 , V 2 ~ , + ~ ~ $ z - $ 1 ) ) + ~ 1 ,  (81) 

($+ (1 - $A) - (V2@2+ F($l -$J)+ (1  - F A )  $+rV2$z a$ 
ax 

= - - S J ( $ 2 ,  V2$2 +F($1- $2)) + 8 2 ,  ( 8 2 )  

where U* = Q(Ul + U,) is the horizontal velocity scale, L = ( U*//3')2 is the horizontal 
length scale and time is scaled accordingly. A = (Ul- U2)/U* is the shear parameter 
and F = L2/L& is the rotational Froude number, where the radius of deformation, 
L,, is given by ( g D ( p 2 - p 1 ) / ( 2 p 2 ) ) ~ / f , .  B and r have the same meaning as in $ 2 .  The 
derivation of (81) and (82) is given by Pedlosky (1970) with somewhat different 
normalization. 

We find it more convenient to separate barot,ropic and baroclinic effects. Conse- 
quently, we write 

"1 

$m = 9($1+$2)7 $7 = 9 ( $ 1 - $ 2 ) 9  S m  = $ ( f l l + f l A ,  ST = B(S1-82), (83) 

and add and subtract equations (81) and ( 8 2 )  to obtain 

= - € J ( $ m , v 2 $ r ) - E J ( $ r 7 , V 2 ~ m )  +2FcJ($m,$Gr,) +S,. ( 8 5 )  

Assume that 8, = S,(x)  and S, = X,(x)  and let ($ , (x) ,  $,(x)) be the corresponding 
steady-state solution which is governed by 
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The solution of (86) and (87) satisfies exactly the nonlinear equations (84) and (85) 
for finite 6 .  

Let 

$m = $m(X) + v m ( x ,  Y ,  t ) ,  $r = $r(x) + ~)r (x ,  Y ,  t ) ,  (88) 

where plm and plr are the barotropic and baroclinic perturbations of the basic state. 
The linear equations governing the evolution of plm and vr are obtained by substituting 
(88) into (86) and (87) and neglecting quadratic terms of the perturbation field. We 
obtain 

(90) 

The stability analysis is motivated by the approach described at  length in 3 2 and 
for the sake of brevity we shall skip unnecessary details. We assume that the perturba- 
tion field can be written 

plm = Urn(x,t)sinly+~m(x,t)cosZy, p17 = UT(x,t)sinZy+V,(x,t)cosZg, (91) 

and substitute (91) into (89) and (90) which are then converted into the following four 
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and 

Z,(k,  k’ ) = (k - k’) (k2 - 2kk‘ - 12)  $,(k - k’ ), 
Z, (k ,k ’ )  = ( k - k ’ )  (k2-2kk’-Z2)c$T(k-k‘),  

Y,(k, k’ )  = (k - k’) (k2  - 2kk‘ - Z2 - 2 F )  $,(k - k’), 
Y,(k,k’)  = (k-k’) (k2 -2kk’ -Z2+2F)$ , (k -k ’ ) ,  

h 

i [ ( k 2  + 2F - 1 - i r k )  S, - &AIC~$~]  
”‘ = k [ ( k 2 -  1 - irk) ( k 2 +  2F - 1 - irk) - &A2k2($k2 - F ) ] ’  

A 

(97) 
i [ ( k 2 -  i - i r k )  s , - A ( ~ - F )  &J 

” = k [ ( k 2 -  l - i r k ) ( k 2 + 2 F -  1 - i r k ) - ~ A 2 k 2 ( ~ k 2 - F ) ] ’  

When E = 0 (92) - (96)  possess solutions which are proportional to e-iAfwith 

h = k - k  

[A2(k2+22)2((k2+Z2)2-4F2) + 4 F z ( 1  +ir(k2+P)/k)2]* 
2(k2  + Z2) (k2  + Z2+ 2F) * (98) - + k  

The expression for h is identical with that given by equation (3.5) of Pedlosky (1970) 
with ,8 = 1 as implied by our nondimensionalization. Our investigation is restricted 
t o  the case s < 1 and similarly to  the barotropic case we shall find that the O(s)  poten- 
tial vorticity source cannot significantly affect the dynamics for times which are less 
than O(s-8). On a shorter time scale the flow field can be destabilized by baroclinic 
instability if the shear is sufficiently strong. The condition for the initiation of baro- 
clinic instability is singular in r in the sense that the threshold for instability for r -+ 0 
is A N 0 * 9 1 / F  (Newell 1972) which is below the value of l / F  obtained for r+O. We 
are interested in the stability of baroclinic flows induced by potent,ial vorticity sources 
in the presence of small friction but in the absence of baroclinic eddies and we restrict 
the shear to  the range 

0 < A 5 0.91. 

For this range of A, friction plays a stabilizing role and instability is excluded unless 
we require that r = O(E%).  From these considerations it follows that 

( 9 9 )  

h = C12,(k, 1, r )  + i Q i ( k ,  1, r ) ,  

k2 + Z2 + F [A2(k2 + Z2)2 ( (k2  + Z2)2 - 4P2) k2 + 4F2k2]* + O(r2) ,  
(k2 + 12 + 2 F )  (k2 + 12) 2 (k2 + 1 2 )  (k2 + 12 + 2F) 

Q,. = k-k 

Q, = O ( r ) .  

It has been shown in $ 2  that  a dominant contribution to  the solution comes from 
that part of the spectrum which is most stationary. Consequently we seek to determine 
the meridional wavenumber 1 and the corresponding zonal wavenumber k which 
yield the most stationary phase. The two branches of the dispersion relation (100) are 
quite complicated, nevertheless they do resemble a cubic with one or three real roots 
for k if dQ,(k = O)/dk > 0 or dQ,(k = O)/dk  < 0 respectively. Both branches of (100) 
are antisymmetric functions of k with Q.(k  = 0) = 0, d2C12,(k = O)/dk2 = 0; hence the 
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most stationary phase occurs only for k = 0 provided d Q ( k  = O)/dk = 0 which from 
( 1  00) implies that - 

= 0. 
12 + 1 

1-- + [A214(14 - 4) + 414 
2 P ( P  + 2) (12+2)12 - 

F has been set equal to 1 since both atmospheric and oceanic flows are characterized 
by (U//3’)* N L,. 

If we set A = 0 in (101) we find that 1, = 1 is the only possible solution and it 
corresponds to the negative branch of (100) or (101). This is the same result as obtained 
in $ 2  and we identify this branch as the barotropic mode; the other branch will be 
referred to as the baroclinic mode. We see that, for A = 0 and l2  = 1,  d Q ( k  = O)/dk = Q 
for the baroclinic mode which consequently cannot have a phase which is stationary. 
If we assume that the radicand of (101 ) does not vanish we obtain that, the meridional 
wavenumber is given by 

12 = [-&A2+[(A2/4)2+ l-A2/4]4]/(1-A2/4), (102) 

and it corresponds to the barotropic mode of (101). Our relevant range of A is defined 
by (99). For A = 0.91 (recall that F = 1)  1, N 0.8919. It follows that the effect of the 
shear is to slightly decrease the meridional wavenumber of the most stationary phase 
from the value of l2 = 1 obtained for the pure barotropic case. The baroclinic mode of 
(100) has positive slope at  k = 0 for la defined by (102). If the radicand of (101) vanishes 
then both barotropic and baroclinic modes have zero slope a t  k = 0. We then obtain 
two conditions which determine both 1, and A 

P + P -  1 = 0, A2 = 4E-4(4-Z4)-1. (103) 

We find that l2  N 0.6180 and A N 1.7013. This value of A is above the threshold of 
instability for baroclinic eddies and is excluded from our consideration. We conclude 
that for the range of A defined by (99) only the baroclinically modified barotropic mode 
of the dispersion relation (100) can have a most stationary phase for k = 0. 

The above considerations indicate that the nature of the instability should be 
broadly similar to the barotropic case treated earlier. We expect it to be associated 
with a waveband of O ( d )  in the vicinity of k = 0 and to have a growth rate which is 
O(e.9). Consequently we assume that 

A A urn = U,(K, t ,  t,, t,, t3) = U L  + €HUi + eu:, + €*U$ + . . . , 

= QK,t,t,,t,,t,) = V~~+€HVy;t,+€V:,+€.9~~+.. .  , 
=QK,t,t,,t,,t,) = V;+€.tVf+€V:+€.9V++ ..., (104) 

K = k/&, t ,  = d t ,  t ,  = Et, t, = 8%. (105) 

Or = Or(K,t,tl,t,,t3) = U ~ + E ~ U ! + E U : + ~ : Q U F +  ... , 

with 

The slow times t, and t ,  are necessary for a self-consistent approximation. The expres- 
sions (104) are substituted into (92)-(95) where terms up to O(&) are retained. This 
leads to a sequence of problems governing the various orders of E which are solved by 
suppressing secular terms at  each order. We also require the solution to be stationary 
whenever possible and this leads tto selecting the meridional wavenumber according 
to the rule (102). 



and Pgiven by (102). We also find that no corrections to the leading order are generated 
at the second and third orders. 

The evolution equations for A ,  B, a and b are determined by suppressing secular 
terms at O(&) where the interaction of the leading order of the perturbation field with 
the field induced by the potential vorticity source finally enters. These evolution 
equations contain terms which depend on the time scale t, through the exponentials 
e*% (see (106)). (These oscillatory terms are derived from the baroclinic branch of 
the dispersion relation.) The separation of scales oft, and t, and the fact that these 
exponentials have no stationary phase enables us to  average these equations over an 
intermediate time scale 6 such that t, < 6 < t,. This leads t o  the following equations: 

6 b - a -  . 2 ~ ~ 3  b = 0, (109) 

where 

The immediate consequence that emerges from equations (108)-( 11 1) is that  for a 
time scale t ,  = O( 1) the dynamics of the barotropic and baroclinic modes is decoupled. 
Furthermore, the potential vorticity sources do not affect the dynamics of the baro- 
clinic modes which are spun down on this time scale. Hence, it suffices to  concentrate 
on the dynamics of the barotropic mode and to  determine the evolution of A and B. 

Equations ( 1  10) and ( 1  11) are identical to equations (37) and (38) with the conse- 
quence that the condition for instability, (56), is directly applicable to our present 
investigation. It follows that instability is triggered if 

E > 1-5079R%/\d(O)), (113) 

where R and 6(0) are given in (1  12). 
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It is evident from (113) that provided d(0)  $. 0 the flow field is always unstable in 
the limit of r -f 0. The same conclusion was reached in $2.  If we regard R as a modified 
friction coefficient then the effect of the shear is to  slightly decrease R from 1 for 
A = 0 to  0.8700 for A = 0.91. The effect on the condition for instability (1 13) is even 
smaller. The transformation from t ,  to T is also little affected by the shear. T/ t3  = 1 
for A = 0 and T / t ,  = 1.3303 for A = 0.91. 

The main difference between the condition for instability of the two-layer model 
considered here and that derived for the barotropic model lies in the expression for 
6(0) given in (112). The expression for 6(0 )  identifies two modes of instabilities; a 
mode associated with 8,(0) and a mode associated with 8,(0). Each of these modes 
can separately lead to  instability. Nevertheless, the first mode is more efficient than 
the second mode especially for weak shear. The Coefficient of 8,(0) in the expression 
for b(0) varies between 1 and 1.1326 when A varies between 0 and 0.91. For the same 
range of A the coefficient of 8,(0) is negative and it varies in magnitude between 0 and 
0.4645. These numerical values imply that instabiiity is more easily triggered by the 
8,(0) mode than by the 8,(0) mode and that for small values of shear it is unlikely 
that the flow field can be destabilized by potential vorticity sources which are purely 
baroclinic. 

The combined 8,(0)-8,(0) mode, where both 8,(0) and 8,(0) are present, leads to 
some interesting results since its effect can be either stabilizing or destabilizing. In  
the range of A considered the coefficient of 8,(0) is positive while that  of 8,(0) is nega- 
tive. It follows that the situation where gnL(0) and 8,(0) have opposite signs is de- 
stabilizing since the value of Id(0) I increases. This corresponds to  the case of a potential 
vorticity source distribution which decreases in magnitude with height irrespective 
of whether its barotropic component is cyclonic or anticyclonic (see equation (83)). 

When 8,fO) and 8,(0) have the same sign, corresponding to a potential vorticity 
distribution which increases in magnitude with height, I6(0) I decreases yielding a 
situation which is more stable than the one considered above. I n  fact, the flow field 
is stable if d ( 0 )  =0, which determines a functional relationship between the ratio 
f iT(0)/8,(O) and A. 8T(0)/8wh(O) decreases monotonically from very large values for 
A+O to  the value of 2.4383 for A = 0.91. It should be emphasized that this neutral 
curve is not conventional since any deviation from it leads to instability. 

The three categories of instabilities discussed above depend on the potential source 
distribution but their existence is derived from the barotropic mode of the dispersion 
relation, i.e. from the negative branch of (100). The baroclinic modification of the 
instabilities enters through A and it is not directly related to  the nature of the potential 
vorticity sources. The presence of shear introduces coupling between the two modes of 
(100) which also manifests itself in the zeroth-order field given by (106). The coupling 
enters through y and 6 both of which are functions of A only (see equations (107)  and 
(102)). We observe that the effect of the shear is twofold. It generates y A  and y B  
baroclinic contributions which appear in the expressions for Ug and Vg. These con- 
tributions owe their existence t o  the barotropic mode. I n  the range of A (0,0*91) y 
varies between 0 and 0.2665. The other effect of the shear is to generate barotropic 
contributions which are proportional to  ae-ihti and be+ihti in the expressions for 
UO, and Vyn in (106). These contributions which are stable (see discussion following 
(1 12)) owe their existence to the baroclinic mode. I n  order to see this we observe that 
S-+ co when A --f 0 (8 = 1.4378 for A = 0-91 ) which implies that for small shear a and b 
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should be rescaled to O(A). It follows that in the limit of zero shear the barotropic 
contribution of the baroclinic mode disappears and the instability field is purely 
barotropic and is identical to the field analysed in $2. We conclude this section by 
commenting that the complete spatial structure and temporal evolution of the 
instability that follow from (1 10) and ( I  11)  can be found in 9 2. 
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